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The face form (crystal form) {hkl} which corresponds to an X-ray reflection hkl

is considered. The eigensymmetry (inherent symmetry) of such a face form can

be used to derive general results on the intensities of the corresponding X-ray

reflections. Two cases are treated. (i) Non-centrosymmetric crystals exhibiting

anomalous scattering: determination of reflections hkl for which Friedel’s rule is

strictly valid, i.e. I(hkl) = I( �hh �kk�ll) (Friedel pair, centric reflection), or violated, i.e.

I(hkl) 6¼ I( �hh �kk�ll) (Bijvoet pair, acentric reflection). It is shown that those

reflections hkl strictly obey Friedel’s rule, for which the corresponding face form

{hkl} is centrosymmetric. If the face form {hkl} is non-centrosymmetric, Friedel’s

rule is violated due to anomalous scattering. (ii) Crystals twinned by merohedry:

determination of reflections hkl, the intensities of which are affected (or not

affected) by the twinning. It is shown that the intensity is affected if the twin

element is not a symmetry element of the eigensymmetry of the corresponding

face form {hkl}. The intensity is not affected if the twin element belongs to the

eigensymmetry of {hkl} (‘affected’ means that the intensities of the twin-related

reflections are different for different twin domain states owing to differences

either in geometric structure factors or in anomalous scattering or in both). A

simple procedure is presented for the determination of these types of reflections

from Tables 10.1.2.2 and 10.1.2.3 of International Tables for Crystallography,

Vol. A [Hahn & Klapper (2002). International Tables for Crystallography, Vol.

A, Part 10, edited by Th. Hahn, 5th ed. Dordrecht: Kluwer]. The application to

crystal-structure determination of crystals twinned by merohedry (reciprocal

space) and to X-ray diffraction topographic mapping of twin domains (direct

space) is discussed. Relevant data and twinning relations for the 63 possible twin

laws by merohedry in the 26 merohedral point groups are presented in

Appendices A to D.

1. Introduction

1.1. Eigensymmetries of face forms

A face form (crystal form) {hkl} is a closed or open poly-

hedron which consists of all faces equivalent to a given face

(hkl) with respect to a (generating) crystallographic point

group. Depending on the (general and special) values of h, k, l,

general, special and limiting face forms are distinguished (cf.

Hahn & Klapper, 2002, x10.1.2.2). Each form has a well

defined eigensymmetry1 which is the full symmetry (inherent

symmetry) of a form, considered as a polyhedron by itself. The

eigensymmetry of a form is a proper or improper supergroup

of the generating point group. Among the 47 different crys-

tallographic face forms, 22 have centrosymmetric and 25 non-

centrosymmetric eigensymmetries. These face forms and their

eigensymmetries are listed in Table 1 [cf. also Table 10.1.2.3 in

International Tables for Crystallography, Vol. A (Hahn &

Klapper, 2002) (hereafter IT A)].2 Illustrations of all 47 face

forms are contained in Chapter 3.2 (pp. 184–188) of the book

by Vainshtein (1994) and Chapter 10 of Buerger (1956).

In centrosymmetric point groups all face forms are centro-

symmetric. In most non-centrosymmetric point groups some

face forms are centrosymmetric. They are built up by pairs of

faces parallel to evenfold (twofold) rotation axes or parallel to

mirror planes of the generating point group, resulting in

pinacoids (parallelohedra) of centrosymetric eigensymmetry

1/mm. These pinacoids are further ‘multiplied’ by the other1 It is pointed out that the terms ‘eigensymmetry’ and ‘oriented eigensymmetry’
are also used in another sense in twinning and domain structures. They denote
the point-group symmetry of a twin component (single domain) of a twinned
crystal, in contrast to the ‘composite symmetry’ of the twin (cf. x3.3.4 of Hahn
& Klapper, 2003 and x2.2 of the present paper).

2 The duals to the 47 face forms are the 47 point forms which are also listed in
Table 10.1.2.3 of IT A; corresponding face and point forms have the same
eigensymmetry.



symmetry elements of the generating point group and thus

create a face form of centrosymmetric eigensymmetry. In point

groups 1 and 3 without evenfold axes and mirror planes,

centrosymmetric face forms do not occur.

Three examples are given:

(i) The rhombohedron has the centrosymmetric eigensym-

metry �332/m. Possible generating symmetries are the centro-

symmetric point groups �33 and �332/m and the non-

centrosymmetric point group 32.

(ii) The cube has the centrosymmetric eigensymmetry

4/m�332/m. Possible generating symmetries are all five cubic

point groups 23, 2/m�33, 432, �443m and 4/m�332/m.

(iii) The pinacoid (parallelohedron) has the centrosym-

metric eigensymmetry1/mm. Possible generating symmetries

are the centrosymmetric point groups �11, 2/m, mmm, 4/m,

4/mmm, �33, �33m, 6/m, 6/mmm and the non-centrosymmetric

groups 2, m, 222, mm2, �44, 422, �442m (�44m2), 32, �66, 622, �662m

(�66m2). The possible generating symmetries of all 47 face forms

are listed in Table 10.1.2.3 of IT A.

In ‘multi-axial’ point groups (e.g. 222, 4mm, 3m1, 31m, 622,

23) the orientations of the eigensymmetry elements of a face

form always coincide with the orientations of the symmetry

elements of the lattice point group (holohedry). In the

trigonal, tetragonal and hexagonal ‘mono-axial’ groups (3, �33;

4, �44, 4/m; 6, �66, 6/m), however, they coincide only for special

values of h, k, l with the orientations of the lattice symmetry

elements. Such special values of h, k, l, leading to ‘fixed’

eigensymmetries, do not exist for the monoclinic point groups

because the holohedry 2/m and the two merohedries 2 and m

are all mono-axial. (This assumes that in all cases the coor-

dinate axes a, b, c of the point group are parallel to the

conventional axes a, b, c of the lattice.) In the triclinic point

groups 1 and �11 no symmetry directions exist.

This is illustrated by the following examples:

(i) In the multi-axial point group 4mm all face forms {hk0}

are ditetragonal prisms with fixed eigensymmetry 4/m2/m2/m.

The eigensymmetry elements of all these prisms coincide with

the elements of the lattice point group (holohedry) 4/m2/m2/m

and, of course, with the symmetry elements of the generating

symmetry 4mm, which is a subgroup of the eigensymmetry.

(ii) In the mono-axial point groups 4, �44 and 4/m, however,

all face forms {hk0} are tetragonal prisms. They all have the

same (type of) eigensymmetry 4/mmm but different (‘floating’)

orientations of their symmetry elements, i.e. different

‘oriented eigensymmetries’. Only the orientation of their

tetragonal axes (i.e. the common generating symmetry

element) is the same. Merely for the special prisms {100} and

{110} are the orientations of all eigensymmetry elements and of

the lattice symmetry elements (holohedry) the same. This is

illustrated in Fig. 1.

Face forms are commonly used to describe and illustrate the

morphology of crystals and their symmetries geometrically.

Beyond morphology, face forms are considered here as sets of

symmetrically equivalent (reflecting) net planes {hkl} and their

parallel ‘opposites’ { �hh �kk�ll}. We present the application of face

forms and their eigensymmetries to two experimentally

important problems concerning the intensities (structure-

factor moduli) of X-ray reflections hkl. They are (i) the strict

validity of Friedel’s rule, I(hkl) = I( �hh �kk�ll), for certain pairs of

reflections of non-centrosymmetric crystals containing anom-

alous scatterers, and (ii) for crystals twinned by merohedry,

the determination of twin-related reflections hkl and h0k0l 0 the

intensities of which are affected (or are not affected) by the

twinning (compared with the untwinned single crystal). For a

first mention of this topic see Klapper & Hahn (1987).

For these purposes the face form {hkl} corresponding to the

reflection (reflecting netplane) hkl of interest is considered. It

should be noted that all higher-order reflections nh nk nl (with

integer n) have the same face form {hkl}. In order to bring out
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Table 1
The 47 crystallographic face forms, their eigensymmetries and number
of faces.

The centrosymmetric face forms are marked with an asterisk, all other forms
are non-centrosymmetric. For the Miller indices of these forms in various
point groups, see Table 2.

No. Face form Eigensymmetry No. of faces

1 Pedion, monohedron 1m 1
2 Pinacoid, parallelohedron 1/mm* 2
3 Dihedron† mm2 2
4 Rhombic disphenoid 222 4
5 Rhombic pyramid mm2 4
6 Rhombic prism mmm* 4
7 Rhombic dipyramid mmm* 8
8 Tetragonal pyramid 4mm 4
9 Tetragonal disphenoid �442m 4
10 Tetragonal prism 4/mmm* 4
11 Tetragonal trapezohedron 422 8
12 Ditetragonal pyramid 4mm 8
13 Tetragonal scalenohedron �442m 8
14 Tetragonal dipyramid 4/mmm* 8
15 Ditetragonal prism 4/mmm* 8
16 Ditetragonal dipyramid 4/mmm* 16
17 Trigonal pyramid 3m 3
18 Trigonal prism �662m 3
19 Trigonal trapezohedron 32 6
20 Ditrigonal pyramid 3m 6
21 Rhombohedron �33m* 6
22 Ditrigonal prism �662m 6
23 Hexagonal pyramid 6mm 6
24 Trigonal dipyramid �662m 6
25 Hexagonal prism 6/mmm* 6
26 Ditrigonal scalenohedron �33m* 12
27 Hexagonal trapezohedron 622 12
28 Dihexagonal pyramid 6mm 12
29 Ditrigonal dipyramid �662m 12
30 Dihexagonal prism 6/mmm* 12
31 Hexagonal dipyramid 6/mmm* 12
32 Dihexagonal dipyramid 6/mmm* 24
33 Tetrahedron �443m 4
34 Cube, hexahedron m�33m* 6
35 Octahedron m�33m* 8
36 Pentagon-tritetrahedron 23 12
37 Pentagon-dodecahedron m�33* 12
38 Tetragon-tritetrahedron �443m 12
39 Trigon-tritetrahedron �443m 12
40 Rhomb-dodecahedron m�33m* 12
41 Didodecahedron m�33* 24
42 Trigon-trioctahedron m�33m* 24
43 Tetragon-trioctahedron m�33m* 24
44 Pentagon-trioctahedron 432 24
45 Hexatetrahedron �443m 24
46 Tetrahexahedron m�33m* 24
47 Hexaoctahedron m�33m* 48

† Alternative names for the dihedron are dome and sphenoid.



the correspondence between face form and reflection, we use

in this treatment the higher-order notation also for face forms,

e.g. {hhh}, {h0 �hh0} or {00l} instead of {111}, {10�110} and {001},

respectively.3

1.2. Anomalous scattering and Friedel/Bijvoet pairs

Anomalous scattering (anomalous dispersion) of atoms is

always present in X-ray diffraction by crystals. The effect is

small (and usually neglected) for X-ray wavelengths far from

the absorption edges of all atoms in the crystal, but is

substantial for wavelengths close to the absorption edge of at

least one atom. Hence, the structure-factor moduli |F(hkl)| do

not only depend on the nature of the atoms and the crystal

structure, but also on the X-ray wavelength employed.

In this paper we consider sets of reflections which are

symmetrically equivalent under the point group of the crystal.

The structure-factor moduli (intensities) of these reflections

are always exactly equal, no matter whether the crystal is

centrosymmetric or non-centrosymmetric or whether anom-

alous scattering is appreciable or not. [An algebraic proof of

this equality is given by Waser (1955).] In crystal structure

determination, especially of the absolute structure, pairs of

‘opposite reflections’ hkl and �hh �kk�ll are of particular importance.

In all centrosymmetric point groups the F-moduli of these

reflections are equivalent and hence exactly equal, whereas in

non-centrosymmetric crystals two cases occur in the presence

of anomalous scattering: |F(hkl)| and |F( �hh �kk�ll)| may be either

exactly equal or different (with respect to anomalous scat-

tering), depending on the values of h, k, l.

The following terms are used:

(i) Friedel pair, if |F(hkl)| = |F( �hh �kk�ll)| is exactly fulfilled owing

to the centrosymmetric eigensymmetry of the relevant face

form {hkl}, even in the presence of anomalous scattering

(Friedel’s rule).

(ii) Bijvoet pair, if |F(hkl)| 6¼ F( �hh �kk�ll)| owing to different

anomalous scattering contributions.

These equalities or inequalities apply to the entire sets of

reflections which are symmetrically equivalent to hkl and �hh �kk�ll
each; hence, we extend the terms Friedel/Bijvoet pairs to

Friedel/Bijvoet sets and to Friedel/Bijvoet face forms and

point forms.

Note that Friedel’s rule is exactly valid also for opposite

acentric reflections hkl and �hh �kk�ll (corresponding to non-

centrosymmetric opposite face forms) under special structural

conditions, even in the presence of anomalous scattering. It

always holds for crystals containing only one kind of scatterers,

i.e. for all non-centrosymmetric element crystals. An example

is provided by crystals of stable selenium and tellurium

(hexagonal lattice, space groups P3121 and P3221). Examples

of hypothetical structures with several different atoms are

given by Iwasaki (1975).

A detailed treatment of anomalous scattering and its

influence upon the diffraction intensities is provided by

Rogers (1975). Brief accounts, including structure-factor

diagrams, can be found in textbooks of X-ray diffraction, e.g.

by Ladd & Palmer (1993), Woolfson (1997) and Massa (2004).

Intensity statistics of ‘Friedel opposites’ are treated by

Shmueli et al. (2008), Flack & Bernardinelli (2008) and

Shmueli & Flack (2009).

2. Results and discussion

2.1. Intensities of Friedel- and Bijvoet-pair reflections in the
presence of anomalous scattering

By consideration of ‘opposite face forms’ {hkl} and { �hh �kk�ll},
corresponding to opposite reflections hkl and �hh �kk�ll, Friedel and

Bijvoet pairs (sets) can be distinguished by the following rule:

Friedel pairs, i.e. |F(hkl)| = |F( �hh �kk�ll)|, occur for all reflections if

the eigensymmetry of the corresponding face form is centro-

symmetric. If the eigensymmetry of {hkl} is non-centrosym-

metric, they form Bijvoet pairs: |F(hkl)| 6¼ |F( �hh �kk�ll)|.

This can be understood as follows. All faces of a face form

{hkl} and their corresponding reflections hkl are symmetrically

equivalent with respect to the generating point group (i.e. the

point group of the crystal under investigation), no matter

whether the eigensymmetry of {hkl} is higher or not. This

means that all reflections belonging to the set {hkl} have the

same structure-factor moduli and, thus, the same intensity.

(The phases of the structure factors, however, may be different

owing to glide or screw components or the location of the

origin.) Since a centrosymmetric face form consists of pairs of

parallel and symmetrically equivalent faces (hkl)/( �hh �kk�ll), the

intensities of reflections hkl and �hh �kk�ll are equal (Friedel set). If
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Figure 1
Face forms tetragonal prism {100} and {210} (generating point group 4),
with two differently oriented eigensymmetries of type 4/m2/m2/m and
their stereographic projections, which differ by a counter-clockwise angle
of arctan (1/2) = 26.56� around the z axis. The axes x and y are the lattice
directions [100] and [010]. In (a) the eigenymmetry orientation
corresponds to the lattice orientation.

3 As mentioned above, instead of the face forms used in this paper, the point
forms, representing reciprocal-lattice points or face poles, could also be used.



the face form is non-centrosymmetric, the (opposite) sets {hkl}

and { �hh �kk�ll} are two non-equivalent ‘inverted’ face forms (with

pairs of mutually parallel faces), i.e. their reflections differ in

anomalous scattering (Bijvoet sets, Bijvoet forms).

The face form corresponding to a reflection hkl may be

easily determined as follows. Find the face form {hkl} for the

relevant point group in Table 10.1.2.2 of IT A. The eigen-

symmetries of all 47 face forms are listed in Table 1 of the

present paper (cf. also Table 10.1.2.3 of IT A).

Examples: (i) All face forms of centrosymmetric crystals are

themselves centrosymmetric; thus all pairs F(hkl) and F( �hh �kk�ll)
are Friedel pairs.

(ii) Reflection h0 �hhl of a crystal with point group 321 (e.g.

quartz, GaPO4): from the listing of face forms of point group

321 in Table 10.1.2.2 it is found that this reflection corresponds

to the face form ‘rhombohedron’, which has the centrosym-

metric eigensymmetry �33m1. Thus, the pair of reflections h0 �hhl/
�hh0h�ll is a Friedel pair, i.e. also their anomalous-scattering

contributions are equal.

(iii) Reflection hh2 �hhl of the same crystal corresponds to the

face form ‘trigonal dipyramid’ with non-centrosymmetric

eigensymmetry �662m; hence, reflections hh2 �hhl and �hh �hh2h�ll are a

Bijvoet pair, i.e. have different structure-factor moduli owing

to different anomalous-scattering contributions; the corre-

sponding face forms are a pair of ‘morphologically inverse’

trigonal bipyramids (cf. Fig. 3).

It is noted that the reflections with centrosymmetric and

non-centrosymmetric face forms correspond to Rogers’

‘centric’ and ‘acentric’ (or ‘sensitive’) reflections, as used in his

tests to determine the absolute structure of enantiomorphic or

polar crystals from diffraction intensities (Rogers, 1981; cf.

Shmueli & Flack, 2009, Table 1). Flack, who suggests another

approach (‘Flack parameter’), uses the terms ‘E reflections’

and ‘non-E reflections’ for the centric and acentric reflections

(Flack, 1983). Non-E reflections form Bijvoet pairs and are

suitable for distinguishing between two enantiomorphic or

polar forms of a crystal (absolute structure), whereas E

reflections (forming Friedel pairs) are not (centric reflections).

The first absolute structure was determined by Bijvoet (1949)

and Bijvoet et al. (1951); it was recently confirmed and refined

(Lutz & Schreurs, 2008).

In Table 2 the non-centrosymmetric point groups, their face

forms and the corresponding X-ray reflections strictly obeying

(centric reflections) or violating (acentric reflections) Friedel’s

rule are collected. Note that in point groups 1 and 3 no

‘symmetry-enforced’ Friedel pairs exist.

2.2. X-ray intensities of crystals twinned by merohedry

2.2.1. General considerations4. Twinning by merohedry can

occur if the point-group symmetry of the crystal is a proper

subgroup of its lattice symmetry (holohedry). The twin

element5 is a symmetry element of the lattice but not of the

merohedral point group of the crystal (Friedel, 1926; Catti &

Ferraris, 1976; Hahn & Klapper, 2003, x3.3.9). As a conse-

quence, the lattice is mapped upon itself by the twin operation,

and the lattices of the different twin components are exactly

parallel to each other (‘parallel-lattice twins’). Thus, all

domains of the different (twin) orientation states are simul-

taneously in exact reflection position for all reflections hkl, i.e.

the two reciprocal lattices are superimposed exactly.

In general, a twin operation ‘interchanges’ a reflection hkl

of one twin domain with a symmetrically non-equivalent

reflection h0k0l 0 of the other domain (these reflections,

however, would be equivalent in the holohedral point group).

Since the structure-factor moduli of these reflections are, as a

rule, different from each other, different domain states reflect

with different intensities. Thus, the intensity diffracted from a

crystal twinned by merohedry is affected by the twinning in

two ways, first by the type of reflections hkl/h0k0l 0 involved in

the superposition and second by the volume fractions of the

twin components. There are, however, always certain super-

imposed reflections, which are not affected by the twinning, i.e.

have the same intensity for any volume ratio of the twin

components.

Three cases of twin-related reflections hkl/h0k0l 0, with

intensities affected or not affected by twinning, are distin-

guished; henceforth these are called ‘twin diffraction cases’ in

order to avoid confusion with the term ‘twin reflection’ (twin

reflection plane) as a twin operation (twin element).

Case A. The twin element belongs to the ‘oriented eigen-

symmetry’ (cf. x1.1) of the face form {hkl} corresponding to

reflection hkl, i.e. the two (twin-related) face forms {hkl} and

{h0k0l 0} are symmetrically equivalent and transformed by the

twin element into each other. Hence, the F-moduli of their

reflections hkl and h0k0l 0 are equal. Case A face forms may be

centrosymmetric or not. An example is given in Fig. 2(a).

Case B. The twin element does not belong to the ‘oriented

eigensymmetry’ of the face form {hkl}, i.e. the two twin-related

(geometrically equal) face forms, which are transformed by

the twin element into each other, are not symmetrically

equivalent and thus their corresponding reflections hkl are not

equal (Fig. 2b). This twin type, however, is further subdivided

with respect to the contributions of the geometric (trigono-

metric) structure factor and of the anomalous scattering.

Case B1. Both the geometric structure factors and the

anomalous scattering contributions of the twin-related

reflections are different. In this case the F-moduli of the two

reflections are different even for negligible anomalous scat-

tering. This case corresponds to twins of type II by Catti &

Ferraris (1976), i.e. the twin element does not belong to the

Laue symmetry of the crystal but to its holohedry.

Case B2. The geometric structure factors are equal, but the

anomalous-scattering contributions are different. This case

occurs always for non-centrosymmetric face forms which are

‘morphologically inverted’ by the twin operation into their

‘opposites’ (Fig. 3). Case B2 is present in inversion twins (type

I by Catti & Ferraris, 1976) for all non-centrosymmetric face
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4 For a review of the group-theoretical background, especially with respect to
coset decomposition of a group and group–subgroup relations, the reader is
referred to Wondratschek (2002), especially xx8.1.6 and 8.3.3.
5 The singular term ‘twin element’ or ‘twin operation’ stands for any member
of the ‘coset of alternative twin operations’ (which represents the twin law) as
defined in x3.3.4 of Hahn & Klapper (2003).



forms, as well as in rotation and reflection twins

for certain non-centrosymmetric face forms (cf.

Appendix B).

These three cases and their effects on

structure determination (reciprocal space) and

X-ray diffraction topography (direct space) are

summarized in Table 3. In the following two

sections they are illustrated by two crystals

exhibiting merohedral twins with three

different twin laws: by quartz SiO2 and its

homeotypes AlPO4 (berlinite), GaPO4 etc.

(point group 321), and by KLiSO4 III (point

group 6). Cubic merohedral twins are treated

in x2.2.4.

2.2.2. Twinning of quartz SiO2 and its
homeotypes. Quartz [point group 321, lattice

symmetry (holohedry) 6/m2/m2/m] provides a

particularly illustrative example because it

exhibits three different kinds of merohedral

twinning: Brazil twins (inversion twins, type I

by Catti & Ferraris, 1976), Dauphiné twins and

combined (Leydolt) twins (both type II by

Catti & Ferraris, 1976).

(a) Brazil twins [inversion twins, composite

(twin) symmetry �332/m1]. A twin is an ‘inversion

twin’ if there is an inversion �11 among the

alternative twin operations each of which

represents the twin law (cf. the footnotes to

x2.2.1). Thus, the six alternative twin opera-

tions of the Brazil twin of quartz are the three

mirror planes {11�220} normal to the twofold

symmetry axes of 321, and the three roto-

inversions �33 around the threefold axis: �331, �333 =
�11, �335 = �33�1, classifying this twin as an inversion

twin.

For the influence of this twinning on the

X-ray intensities of reflections hkil two cases

are distinguished:

(i) The face form is centrosymmetric: the

superimposed intensities are not affected, even

if anomalous scattering is taken into account

(twin diffraction case A). For Brazil twins these

reflections are {h0 �hhl} (rhombohedron), {h0 �hh0}

(hexagonal prism) and {000l} (pinacoid).

(ii) The face form is non-centrosymmetric:

the superimposed intensities of reflections hkil

versus �hh �kk�ii �ll are different, but only due to

anomalous scattering (Bijvoet sets, case B2).

For the Brazil twin these reflections are {hkil}

(trigonal trapezohedron), {hh2 �hhl} (trigonal

dipyramid), {hki0} (ditrigonal prism) and

{hh2 �hh0} (trigonal prism). As for all inversion

twins, case B1 reflections do not occur.

(b) Dauphiné twins (composite symmetry

622). The twin law is usually described as

‘twofold twin axis parallel to the threefold

symmetry axis’. Alternative twin operations,
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Table 2
Intensity relations of Friedel opposites in the 21 non-centrosymmetric point groups in the
presence of anomalous scattering.

I(hkl) = I( �hh �kk�ll) is strictly obeyed (‘Yes’, centric reflection, Friedel pair) if the corresponding face
form is centrosymmetric (Friedel’s rule). The number of faces is given in parentheses. Asterisks
(*) refer to the footnote at the end of the table.

Point group Reflection Face form (number of faces)
Centrosymmetry
I(hkl) = I( �hh �kk�ll)

1 hkl Pedion (monohedron) (1) No
2* hkl Dihedron (sphenoid) (2) No
(2 || b) h0l Pinacoid (parallelohedron) (2) Yes

0k0 Pedion (monohedron) (1) No
m* hkl Dihedron (dome) (2) No
(m ? b) h0l Pedion (monohedron) (1) No

0k0 Pinacoid (parallelohedron) (2) Yes
222 hkl Rhombic disphenoid (4) No

hk0, h0l, 0kl Rhombic prisms (4) Yes
h00, 0k0, 00l Pinacoids (parallohedra) (2) Yes

mm2 hkl Rhombic pyramid (4) No
hk0 Rhombic prism (4) Yes
h0l, 0kl Dihedra (domes) (2) No
h00, 0k0 Pinacoids (parallelohedra) (2) Yes
00l Pedion (monohedron) (1) No

4 hkl, h0l, hhl Tetragonal pyramids (4) No
hk0, h00, hh0 Tetragonal prisms (4) Yes
00l Pedion (monohedron) (1) No

�44 hkl, h0l, hhl Tetragonal disphenoids (4) No
hk0, h00, hh0 Tetragonal prisms (4) Yes
00l Pinacoid (parallelohedron) (2) Yes

422 hkl Tetragonal trapezohedron (8) No
h0l, hhl Tetragonal dipyramids (8) Yes
hk0 Ditetragonal prism (8) Yes
h00, hh0 Tetragonal prisms (4) Yes
00l Pinacoid (parallelohedron) (2) Yes

4mm hkl Ditetragonal pyramid (8) No
h0l, hhl Tetragonal pyramids (4) No
hk0 Ditetragonal prism (8) Yes
h00, hh0 Tetragonal prisms (4) Yes
00l Pedion (monohedron) (1) No

�442m* hkl Tetragonal scalenohedron (8) No
h0l Tetragonal dipyramid (8) Yes
hhl Tetragonal disphenoid (4) No
hk0 Ditetragonal prism (8) Yes
h00, hh0 Tetragonal prisms (4) Yes
00l Pinacoid (parallelohedron) (2) Yes

3* hkil, h0 �hhl, hh2�hhl Trigonal pyramids (3) No
(hexagonal axes) hki0, h0 �hh0, hh2 �hh0 Trigonal prisms (3) No

000l Pedion (monohedron) (1) No
321* hkil Trigonal trapezohedron (6) No
(hexagonal axes) h0�hhl Rhombohedron (6) Yes

hh2�hhl Trigonal dipyramid (6) No
hki0 Ditrigonal prism (6) No
h0�hh0 Hexagonal prism (6) Yes
hh2�hh0 Trigonal prism (3) No
000l Pinacoid (parallelohedron) (2) Yes

3m1* hkil Ditrigonal pyramid (6) No
(hexagonal axes) h0�hhl Trigonal pyramid (3) No

hh2�hhl Hexagonal pyramid (6) No
hki0 Ditrigonal prism (6) No
h0�hh0 Trigonal prism (3) No
hh2�hh0 Hexagonal prism (3) Yes
000l Pedion (monohedron) (1) No

6 hkil, h0 �hhl, hh2�hhl Hexagonal pyramids (6) No
hki0, h0 �hh0, hh2 �hh0 Hexagonal prisms (6) Yes
000l Pedion (monohedron) (1) No

�66 hkil, h0 �hhl, hh2�hhl Trigonal dipyramids (6) No
hki0, h0 �hh0, hh2 �hh0 Trigonal prisms (3) No
000l Pinacoid (parallelohedron) (2) Yes

622 hkil Hexagonal trapezohedron (12) No
h0�hhl, hh2 �hhl Hexagonal dipyramids (12) Yes
hki0 Dihexagonal prism (12) Yes
h0�hh0, hh2 �hh0 Hexagonal prisms (6) Yes
000l Pinacoid (parallelohedron) (2) Yes



representing the same twin law, are rotations by 60�, 180�, 300�

(i.e. rotations 61, 63 = 2, 65) around [001] and the three twofold

rotations 2[120], 2[210], 2[1�110] between the twofold symmetry

axes of 321 (cf. Hahn & Klapper, 2003, p. 404). The following

three types of face forms, corresponding to the three twin

diffraction cases A, B1 and B2, are distinguished:

(i) Face forms {h0 �hh0} (hexagonal prism, eigensymmetry

6/mmm) and {000l} (pinacoid, eigensymmetry 1/mm) are

centrosymmetric and contain the twin elements as eigensym-

metry elements. The corresponding sets of twin-related

reflections are equivalent (case A) and, hence, not influenced

by the twinning, not even in the presence of anomalous scat-

tering.

(ii) Face forms {hkil} (trigonal trapezohedron, eigensym-

metry 321) and {h0 �hhl} (rhombohedron, eigensymmetry �332/m1):

the (alternative) twin operations do not belong to the eigen-

symmetries of these forms. This twinning transforms the ‘large

rhombohedron’ {10�111} of quartz into the non-equivalent

‘small rhombohedron’ {�11011} and vice versa. The intensities of

the corresponding reflections are affected by the twinning

(case B1) due both to different geometrical

structure factors and different anomalous

scattering contributions.

(iii) Face forms {hh2 �hhl} (trigonal dipyramid),

{hki0} (ditrigonal prism) and {hh2 �hh0} (trigonal

prism) possess the eigensymmetry �662m =

3/m2m. The twofold twin axis does not belong

to this symmetry, and the corresponding

reflections are modified by this twinning. This

case, however, is special because the combi-

nation of the eigen mirror plane in �66 (= 3/m) of

the face forms with the twofold twin axis

normal to it generates the twin inversion. Thus,

the twin-related face forms are pairs of

‘inverted’ polyhedra, and the Dauphiné twin-

ning has for these special forms the same effect

as an inversion twin. This is illustrated in Figs.

3(a) and explained in more detail in Appendix

B. Consequently, the intensities of the corre-

sponding reflections are affected only by the

different anomalous-scattering contributions

(case B2).

(c) Combined (Leydolt, Liebisch) twins

(composite symmetry �662m = 3/m2m). The twin

law is represented by the coset of the following

six alternative twin operations: three twin

reflections across the planes {10�110} and three

rotoinversions �66 around [001]: �661, �663 = m(0001),
�665 = �66�1. The twin reflection plane m(0001)

normal to the threefold axis is the most illus-

trative twin element.

(i) The twin element belongs to the eigen-

symmetry �662m of the forms {hh2�hhl} (trigonal

bipyramid), {hki0} (ditrigonal prism), {h0 �hh0}

(hexagonal prism), {hh2 �hh0} (trigonal prism)

and {000l} (pinacoid, eigensymmetry 1/mm);

thus, the corresponding twin-related reflections

are equivalent and not affected by the twinning (case A).

(ii) The eigensymmetries of the face forms {hkil} (trigonal

trapezohedron, 321) and {h0 �hhl} (rhombohedron, �332/m1) do

not contain the twin element: the corresponding reflections

differ both in geometric structure factors and anomalous-

scattering contributions (case B1). Case B2 does not occur in

this twinning.

The intensity characteristics of the seven types of reflections

for the three merohedral twin laws of quartz are summarized

in Table 4 and derived in Appendix C.

2.2.3. Twinning of KLiSO4 III. The room-temperature phase

III of KLiSO4 has the mono-axial point group 6 (lattice

symmetry 6/mmm) and forms three kinds of twins according to

the laws ‘twin reflection plane parallel to [001]’, ‘twofold twin

axis normal to [001]’ and ‘twin reflection plane normal to

[001]’ (inversion twin). The two former are type II twins, the

latter is a type I twin by Catti & Ferraris (1976). This example

was chosen because rich experimental data are available

(Klapper et al., 1987) and because of the complexity of the

twinning owing to its mono-axial point group.
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Table 2 (continued)

Point group Reflection Face form (number of faces)
Centrosymmetry
I(hkl) = I( �hh �kk�ll)

6mm hkil Dihexagonal pyramid (12) No
h0�hhl, hh2 �hhl Hexagonal pyramids (6) No
hki0 Dihexagonal prisms (12) Yes
h0�hh0, hh2 �hh0 Hexagonal prisms (6) Yes
000l Pedion (monohedron) (1) No

�662m* hkil Ditrigonal dipyramid (12) No
h0�hhl Hexagonal dipyramid (12) Yes
hh2�hhl Trigonal dipyramid (6) No
hki0 Ditrigonal prism (6) No
h0�hh0 Hexagonal prism (6) Yes
hh2�hh0 Trigonal prism (3) No
000l Pinacoid (parallelohedron) (2) Yes

23 hkl Pentagon-tritetrahedron (12) No
hhl, |h| < |l| Trigon-tritetrahedron (12) No
hhl, |h| > |l| Tetragon-tritetrahedon (12) No
hk0 Pentagon-dodecahedron (12) Yes
hh0 Rhomb-dodecahedron (12) Yes
hhh Tetrahedron) (4) No
h00 Cube (hexahedron) (6) Yes

432 hkl Pentagon-trioctahedron (24) No
hhl, |h| < |l| Tetragon-trioctahedron (24) Yes
hhl, |h| > |l| Trigon-trioctahedron (24) Yes
hk0 Tetrahexahedron (24) Yes
hh0 Rhomb-dodecahedron (12) Yes
hhh Octahedron (8) Yes
h00 Cube (hexahedron) (6) Yes

�443m hkl Hexatetrahedron (24) No
hk0 Tetrahexahedron (24) Yes
hhl, |h| < |l| Trigon-tritetrahedron (12) No
hhl, |h| > |l| Tetragon-tritetrahedron (12) No
hh0 Rhomb-dodecahedron (12) Yes
hhh Tetrahedron) (4) No
h00 Cube (hexahedron) (6) Yes

* Each of these point groups is represented here by only one structural setting. For the monoclinic groups 2 and
m the ‘unique axis c’ setting is not included. The settings �44m2, 312, 31m, �66m2, as well as the ‘rhombohedral-
axes’ settings of 3, 32 and 3m, are not given for reasons of compactness. In all these (not included) settings, face
forms, multiplicities and Yes/No entries agree with the settings contained in this table because these data do not
change if another reference system is chosen. Only the hkl or hkil indices depend on the setting and can easily
be obtained as follows. In the settings �442m and �44m2 the reflection indices of the pairs h0l/hhl and h00/hh0 are
interchanged, in the settings 321/312, 3m1/31m, �662m/�66m2 the reflection indices of the pairs h0 �hhl/hh2 �hhl and
h0 �hh0/hh2 �hh0 are interchanged (cf. Table 10.1.2.2 of IT A). Statistical and symmetry data for the different types
of ‘Friedel opposites’ for all non-centrosymmetric point groups were recently provided by Shmueli & Flack
(2009).



(a) Twin law ‘twin reflection plane parallel [001]’ (compo-

site symmetry 6mm). The six (i.e. 3 + 3) twin mirror planes

{10�110} and {11�220} parallel to the sixfold axis are ‘alternative’

twin elements. Since 6 is a mono-axial point group, the

oriented eigensymmetries of the face forms have to be

considered.

(i) Face forms {h0 �hhl} and {hh2 �hhl} (both hexagonal pyramids

with the same oriented eigensymmetry 6mm), {h0 �hh0} and

{hh2 �hh0} (both hexagonal prisms with the same oriented

eigensymmetry 6/mmm), and {000l} (pedion or monohedron,

eigensymmetry 1m) contain the twin elements within their

eigensymmetries [cf. Fig. 2(a) for face form {h0 �hh0}], i.e. the

corresponding superimposed sets of reflections are equivalent

and thus not affected by this twinning; their intensities are the

same for any volume ratio of the twins and do not generate

twin domain contrast in X-ray topography of the twins (case A

reflections).

(ii) Face forms {hkil} (hexagonal pyramids, all with differ-

ently oriented eigensymmetries of type 6mm) and {hki0}

(hexagonal prisms, all with differently oriented eigensymme-

tries of type 6/mmm): the oriented eigensymmetries do not

contain the twin mirror planes [cf. Fig. 2(b) for a prism

{hki0}], i.e. the intensities of the corresponding superimposed

non-equivalent reflections change with the volume ratio

of the twins. In X-ray topography they generate domain

contrast (case B1 reflections; case B2 reflections do not

occur).

(b) Twin law ‘twofold twin axis normal to [001]’ (composite

symmetry 622). The six (i.e. 3 + 3) alternative twin elements

are the twofold twin axes along h100i and h120i.
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Figure 2
Face forms hexagonal prism {h0�hh0} (special) (a) and {hki0} (general) (b),
generating point group 6, with two differently oriented eigensymmetries
of type 6/m2/m2/m. In (a) the twin mirror plane m belongs to the oriented
eigensymmetry, in (b) not. Hence, reflections of type {hki0} are affected
by the twinning, reflections {h0 �hh0} are not (cf. Fig. 5). The other special
hexagonal prism {hh2 �hh0} contains the twin mirror plane in its
eigensymmetry too: hence, reflections {hh2 �hh0} are also not affected by
the twinning.

Figure 3
‘Morphological (geometrical) inversion’ of non-centrosymmetric face
forms, illustrated for three selected examples. (a) Face forms trigonal
dipyramid {hh2 �hhl} and { �hh�hh2hl} (e.g. of quartz, point group 321, cf. x2.2.2),
morphologically related by a twofold axis parallel [001] (rotation twins),
but also by a morphological inversion centre �11 indicated by a small circle
(inversion twins). The combination of these two forms results in the
centrosymmetric form hexagonal dipyramid. (b) Face forms hexagonal
pyramid {h0 �hhl} and {h0 �hh�ll} (e.g. of KLiSO4, point group 6, cf. x2.2.3),
morphologically related by a twofold axis parallel [100] (rotation twin), as
well as by a mirror plane (0001) (reflection twin), but also by a
morphological inversion centre �11 (inversion twin). Their combination
results in the centrosymmetric form hexagonal dipyramid. (c) The same
for tetrahedra {hhh} and { �hh�hh�hh} with the centrosymmetric combination
octahedron. The X-ray diffraction sets corresponding to these forms are
affected by both rotation (or reflection) twinning as well as by inversion
twinning (twin diffraction cases B2, defined in x2.2.1). These pairs of non-
centrosymmetric face forms are called here ‘morphologically (geome-
trically) inverted’ forms, independent of whether the two related crystal
structures are inverted (opposite handedness) or not (equal handedness)
(cf. Appendices B and C). These inverted forms correspond to sets of
‘opposite reflections’ as used by Flack & Bernardinelli (1999, 2008). Note
that a morphological inversion of the three given face forms can also be
achieved by twin reflection planes: in (a) by the twin planes {11�220}, in (b)
by the plane (0001) and in (c) by the planes {100}. In these cases the twin
reflection planes are normal to a twofold symmetry axis of the generating
point groups 321 (a), 6 (b) and 23 or �443m (c) (and thus also of the face-
form eigensymmetries). Hence, these twins are inversion twins with the
mirror plane as an alternative twin element of the twin coset and, thus,
also exhibit inverted domain states.



(i) Face forms {h0 �hh0} and {hh2 �hh0} (both hexagonal prisms

with the same oriented eigensymmetry 6/mmm) contain the

twin elements within their eigensymmetries, i.e. the corre-

sponding superimposed reflections are equivalent and not

affected by this twinning (case A).

(ii) Face forms {hkil} (hexagonal pyramids, all with differ-

ently oriented eigensymmetries 6mm) and {hki0} (hexagonal

prisms, all with differently oriented eigensymmetries 6/mmm):

the oriented eigensymmetries do not contain the twofold twin

axes; the corresponding superimposed non-equivalent reflec-

tions are affected by the twinning (case B1), i.e. they differ

both in their geometric structure factors and their anomalous-

scattering contribution.

(iii) Face forms {h0 �hhl} and {hh2 �hhl} [both ‘special’ hexagonal

pyramids (‘apices up’) with the same oriented eigensymmetry

6mm] do not contain the twin elements in their eigensymmetry.

In these special cases, however, in contrast to (ii) above, the

twin axis generates the ‘inverted’ pyramids { �hh0h�ll} and { �hh �hh2h�ll}
with ‘apices down’ (cf. Fig. 3b). The intensities of these

superimposed reflections are modified only by different

anomalous-scattering contributions (case B2). The same

applies to the pedion (000l) (eigensymmetry 1m). For these

special sets of reflections the twin law (b) appears as an

inversion twin.

(c) Twin law ‘twin reflection plane normal to [001]’

(composite symmetry 6/m, inversion twin). The coset of twin

operations consists of �661, �663 = m(0001), �665, �331, �333 = �11, �335.

(i) The general hexagonal prisms {hki0} and the two special

hexagonal prisms {h0 �hh0} and {hh2 �hh0} (oriented eigensymmetry

6/mmm) all include the twin law in their eigensymmetry and,

hence, represent twin diffraction case A, i.e. they are not

affected by the twinning.

(ii) The general hexagonal pyramids {hkil} and the special

hexagonal pyramids {h0 �hhl} and {hh2 �hhl} (differently oriented

eigensymmetries 6mm) do not contain the twin element in their

eigensymmetries, but every twin element generates the

‘inverted’ pyramids { �hh �kk�ii�ll} etc., thus forming case B2 reflec-

tions. The same applies to the pedion (000l) with eigensym-

metry1m. As in all inversion twins, case B1 reflections do not

occur.

The intensity characteristics of the three merohedral twin

laws above are summarized in Table 5.

2.2.4. Cubic merohedral twins of point group 23. To

complement the previous trigonal and hexagonal examples,

the cubic cases are treated in this section. Point group 23

(order 12), the lowest-symmetry group of the cubic system,

can form three kinds of merohedral twins, each of index 2.

(i) Inversion twin, composite symmetry 2/m�33 (order 24);

coset of 12 alternative twin operations: three reflections

m{100}, four �331 and four �335 rotoinversions around the four

directions h111i and �333 = �11 (inversion).

(ii) Rotation twin with 90� rotation around [100], composite

symmetry 432 (order 24); coset: three 41 (90�) and three 43

(270�) rotations around h100i, six twofold rotations around

h110i.

(iii) Reflection twin with twin mirror plane (110), composite

symmetry �443m (order 24); coset: six reflections m{110}, three
�441 and three �443 rotoinversions around h100i.
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Table 3
Sensitivity of twin-related reflections hkl/h0k0l 0 of face forms {hkl} to twinning by merohedry and its effect on intensities of superimposed reflections and
X-ray topographic domain contrast.

Twin element part
of eigensymmetry
of {hkl}

Geometrical
(trigonometric)
structure factors

Contributions of
anomalous scattering to
|F(hkl)| and |F(h0k0l 0)|

Sensitive to
twinning

Intensities of
superimposed
reflections different†

Domain contrast in
X-ray topography

Yes (case A) Equal Equal No No No
No (case B1) Different Different Yes Yes Yes
No (case B2) Equal Different Yes Yes Yes

† ‘Yes’ also means that the intensity of the superimposed reflection depends on the volume ratio of the twin components.

Table 4
The seven face forms of point group 321 and of the composite symmetries of Brazil, Dauphiné and combined (Leydolt) twins of quartz.

The names of the face forms of the twin composite symmetries, which differ from the forms of untwinned point group 321, are printed in bold. They have twice the
number of faces and correspond to X-ray reflections modified by the twinning (i.e. their intensities are different in different twin domain states, type B reflections).
The reflections corresponding to the forms marked with an asterisk (*) differ only by anomalous scattering (Bijvoet forms, type B2). Unchanged form names imply
unchanged intensities (Friedel forms, type A). The labels I and II refer to different orientations of the same (type of) face form, here hexagonal dipyramids and
prisms rotated by 30� (or 90�) around the hexagonal axis.

Miller–Bravais Untwinned Brazil twin Dauphiné twin Combined (Leydolt) twin
indices Point group 321 Composite symmetry �332/m1 622 �662m

{hkil} Trigonal trapezohedron Ditrigonal scalenohedron B1 Hexagonal trapezohedron B1 Ditrigonal dipyramid B1
{h0�hhl} Rhombohedron Rhombohedron A Hexagonal dipyramid I B1 Hexagonal dipyramid I B1
{hh2�hhl} Trigonal dipyramid Hexagonal dipyramid II (*) B2 Hexagonal dipyramid II (*) B2 Trigonal dipyramid A
{hki0} Ditrigonal prism Dihexagonal prism (*) B2 Dihexagonal prism (*) B2 Ditrigonal prism A
{h0�hh0} Hexagonal prism I Hexagonal prism I A Hexagonal prism I A Hexagonal prism I A
{hh2�hh0} Trigonal prism Hexagonal prism II (*) B2 Hexagonal prism II (*) B2 Trigonal prism A
{000l} Pinacoid Pinacoid A Pinacoid A Pinacoid A



These three cases are characterized in Table 6.6

Concerning (i): the twinning 23! 2/m�33 is the simple case of

an inversion twin with two domain states of opposite hand-

edness, involving only twin diffraction cases A and B2, i.e.

reflections not twin-affected (A) and twin-affected by anom-

alous scattering alone (B2).

Concerning (ii): the second case, 23 ! 432, is a more

complicated pure rotation twin preserving the handedness of

the twin domains. All three twin diffraction cases A, B1 and

B2 are present. Case B1 involves both different geometrical

structure factors and different anomalous-scattering contri-

butions.

Concerning (iii): the third case, 23 ! �443m, is a reflection

twin with opposite handedness of the domain states. Here only

the twin diffraction cases A and B1 occur.

Cases B2 of the two merohedral twins (i) and (ii) above

involve ‘morphologically inverted’ face forms. This is illu-

strated for the tetrahedron {hhh} in Fig. 3(c). Morphologically

inverted forms are discussed in detail under the aspect of

equal and opposite handedness of the structure in

Appendix B.

2.2.5. Summary of twinning by merohedry (R1 twins). The

occurrence of the three diffraction cases, A, B1 and B2, in

inversion and non-inversion twinning of the 26 types of

merohedral point groups7 is summarized as follows (cf.

Appendix A for the 35 ‘structural settings’ of these groups).

(i) Inversion twins, possible only in the 21 non-centrosym-

metric merohedral point groups:

Possible twin diffraction cases:

A: twin-related sets of reflections have exactly equal F-

moduli;

B2: twin-related sets of reflections have equal geometric

(trigonometric) structure factors but differ in their anomalous-

scattering contributions (Bijvoet sets).

Point groups 3 and 1: only case B2 is possible.

(ii) Non-inversion twins in the five centrosymmetric mero-

hedral groups 4/m, �33, �332/m (hexagonal lattice), 6/m and 2/m�33:

Possible twin diffraction cases:

A: as above;

B1: twin-related sets of reflections differ in both their

geometric structure factors and their anomalous-dispersion

contributions.

(iii) Non-inversion twins in the 16 non-centrosymmetric

merohedral groups of the tetragonal, trigonal, hexagonal and

cubic systems:8

Possible twin diffraction cases:

A, B1, B2: all as above.

It is emphasized that the above rules, which are based on

symmetry considerations alone, do not give any information

on the degree by which the structure-factor moduli of the

(superimposed) reflections may differ. The difference is

dependent both on the individual structure-factor moduli of

the twin-related reflections hkl and h0k0l 0 and on the volume
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Table 6
The seven reflection types of cubic point groups, multiplicities and eigensymmetries of the corresponding face forms in the untwinned group 23 and in the
twin composite groups 2/m�33, 432 and �443m†.

For the three composite groups the twin reflection cases A, B1 and B2 (cf. x2.2.1) are given.

Untwinned group 23 Composite group 2/m�33 Composite group 432 Composite group �443m

Reflection types Multipl. Eigensym. Multipl. Eigensym. Twin refl. Multipl. Eigensym. Twin refl. Multipl. Eigensym. Twin refl.

{hkl} 12 23 24 m�33 B2 24 432 B1 24 �443m B1
{hhl} h < l 12 �443m 24 m�33m B2 24 m�33m B2 12 �443m A
{hhl} h > l 12 �443m 24 m�33m B2 24 m�33m B2 12 �443m A
{hk0} 12 m�33 12 m�33 A 24 m�33m B1 24 m�33m B1
{hh0} 12 m�33m 12 m�33m A 12 m�33m A 12 m�33m A
{h00} 6 m�33m 6 m�33m A 6 m�33m A 6 m�33m A
{hhh} 4 �443m 8 m�33m B2 8 m�33m B2 4 �443m A

† For the names of the face forms and their eigensymmetries, see the cubic point groups in Tables 10.1.2.2 and 10.1.2.3 of IT A.

Table 5
Point group 6: the same data as in Table 4 for the three twin cases 6! 6/m (inversion twin), 6! 622 (rotation twin) and 6! 6mm (reflection twin)
of KLiSO4.

Miller–Bravais Untwinned Inversion twin Rotation twin Reflection twin
indices Point group 6 Composite symmetry 6/m 622 6mm

{hkil} Hexagonal pyramid Hexagonal dipyramid (*) B2 Hexagonal trapezohedron B1 Dihexagonal pyramid B1
{h0�hhl} Hexagonal pyramid I Hexagonal dipyramid I (*) B2 Hexagonal dipyramid I (*) B2 Hexagonal pyramid I A
{hh2�hhl} Hexagonal pyramid II Hexagonal dipyramid II (*) B2 Hexagonal dipyramid II (*) B2 Hexagonal pyramid II A
{hki0} Hexagonal prism Hexagonal prism A Dihexagonal prism B1 Dihexagonal prism B1
{h0�hh0} Hexagonal prism I Hexagonal prism I A Hexagonal prism I A Hexagonal prism I A
{hh2�hh0} Hexagonal prism II Hexagonal prism II A Hexagonal prism II A Hexagonal prism II A
{000l} Pedion Pinacoid (*) B2 Pinacoid (*) B2 Pedion A

6 It should be mentioned that the three cubic twin composite groups 2/m�33, 432
and �443m (all order 24) can further twin to the cubic holohedry m�33m (order 48).
7 Here the ‘rhombohedral holohedry’ �332=m is included as a merohedry of the
hexagonal holohedry 6/m2/m2/m.

8 In the triclinic, monoclinic and orthorhombic point groups only merohedral
inversion twins are possible, case (i).



ratio of the twin domain states. Note that for a twin volume

ratio near 50:50, twin-related reflections exhibit equal inten-

sities and, hence, twins of types (ii) and (iii) above may

simulate a higher-symmetric Laue class, whereas twins of type

(i) may simulate a centrosymmetric (disordered) structure. In

X-ray diffraction topography, however, the volume ratio does

not play a role, because the different mapped twin domains

are spatially resolved (direct space). Here the ‘domain

contrast’ (i.e. the difference between the F-moduli of twin-

related reflections) may be strong or weak or not detectable

(the latter for inversion twins, case B2, if anomalous scattering

is negligible). Examples are given in x3.3.

2.3. Finding reflections affected by merohedral twinning

For several purposes it is desirable to know which reflec-

tions are affected by a twin element (twin operation) of a

given merohedral point group. In the following we suggest a

very simple procedure to find these reflections by using Table

10.1.2.2 of IT A. First, the composite symmetry of the twin can

be determined by combining the point group of the untwinned

crystal with the twin operation and establish the supergroup,

which is, for merohedral twins, always minimal of index 2.9

This is, for example, easily done by adding a twin element to

the stereographic projection of the point group given in Table

10.1.2.2 and thus generating the stereographic projection of

the ‘twin-composite’ point group. Similarly, the group–

subgroup Table 10.1.3.2 of IT A may be used. Now the lists of

the face forms of the ‘untwinned’ point group and the ‘twin-

composite’ point group have to be compared. If, for the same

type of Miller indices {hkl}, the face forms are the same (same

name, same number of faces), the twin element belongs to the

eigensymmetry of this form (diffraction case A), and the

corresponding set of reflections is not modified by the twin-

ning. If, however, the two face forms of the untwinned and the

composite symmetry are different, the corresponding F-

moduli are affected by the twinning (case B) in two different

ways. If the two twin-related forms (of the untwinned point

group) are non-centrosymmetric and ‘morphologically

inverted’ polyhedra (cf. Fig. 3), case B2 exists. If the two twin-

related forms are not ‘inverted’, case B1 applies, i.e. both their

geometric (trigonometric) structure factors and their

anomalous-scattering contributions are different. Note that

these procedures are only correct if both point groups are

referred to the same coordinate system.

This procedure is illustrated in condensed form in Table 4,

where the face forms are listed for point group 321 and the

‘twin-composite’ groups of Brazil, Dauphiné and combined

(Leydolt) twins of quartz, with the representative twin

elements ‘twin inversion centre �11’ (composite symmetry
�332=m1), ‘twofold twin axis along [001]’ (composite symmetry

622) and ‘twin reflection plane parallel (0001)’ (composite

symmetry �662m), respectively. All reflections for which the

corresponding face forms of the composite group differ from

those of the ‘untwinned’ group are modified by the twinning,

and their face forms are printed in bold face.

In Appendix D the types of reflections hkl affected and not

affected by merohedral twinning are listed for all 63 possible

twin laws in all 26 merohedral crystallographic point groups.

3. Applications

3.1. Determination of the absolute structure

The determination of the ‘absolute structure’ of non-

centrosymmetric enantiomorphic crystals containing chiral

molecules or atomic groups, or of polar crystals (‘absolute

orientation’) requires measurement and interpretation of the

(often small) differences due to anomalous scattering in many

|F(hkl)| 6¼ |F( �hh �kk�ll)| Bijvoet pairs. x2.1 provides complete and

simple geometric methods for the selection of those sets of

reflections which form Bijvoet pairs, i.e. are suitable for the

determination of the absolute structure (‘acentric’ or ‘sensi-

tive’ or E-reflections; Rogers, 1975, 1981; Flack, 1983; Flack &

Bernardinelli, 1999, 2008; Shmueli et al., 2008; Shmueli &

Flack, 2009).

3.2. Structure determination of crystals twinned by
merohedry

In single-crystal structure determination twinning is a

frequently encountered serious problem for non-merohedral

twins (‘ferroelastic’ twins), but even more for merohedral

(‘non-ferroelastic’) twins (cf. Janovec & Přı́vratská, 2003,

x3.4.2.2.1). In the ‘ferroelastic’ case certain diffraction spots

split, and the split intensities can be measured separately if the

spots are sufficiently resolved, and the volume ratio of the twin

states can be measured experimentally. The distribution of

non-split and split spots and the direction of their splitting

allows one to identify the twin law involved. In crystals

twinned by merohedry the reflections (diffraction spots) of

differently oriented twin domains coincide completely and

exactly, and their intensities cannot be measured separately. If

the twin law is known, the reflections modified by the twinning

are easily determined as shown in x2.3. In turn, if the affected

reflections are known from the diffraction data, the twin law

can be identified. An intermediate situation occurs for twins

by pseudo-merohedry. In this border case of ‘ferroelastic’

twins the splitting of diffraction spots is too small to permit a

separate measurement of their intensities, at least for low-

index reflections, i.e. small diffraction angles.

Several modern programs for the determination of crystal

structures from measured single-crystal diffraction data

(intensities) contain a routine to refine the structure of crystals

twinned by merohedry, especially the program suite

SHELX97 (Sheldrick, 1998), the program TWIN3.0 by

Kahlenberg & Messner (2001) and the program CRYSTALS

12 by Betteridge et al. (2003). Tests of different methods for

the detection of merohedral twinning have been devised by

Kahlenberg (1999). A description of the use of the program

SHELXL97 for merohedrally twinned crystals is provided by

Herbst-Irmer (2006) and Herbst-Irmer & Sheldrick (1998).
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9 Note, however, that superposition of two or three independent merohedral
twin laws, i.e. twins of twins, can occur, leading to (composite) supergroups of
index 4 and even 8, e.g. 4! 4/m! 4/mmm or 3! �33! 6/m! 6/mmm.



For this procedure the twin law should be known or at least

suspected. These programs consider the intensity of a reflec-

tion as a sum of the intensities of the different superimposed

twin components (domains), weighted by their volume

portions (whereby the volume ratios are also subject to

refinement). This is done for all reflections, regardless of

whether their intensities are affected by the twinning or not.

Thus, the distinction between affected and non-affected

reflections is usually not performed in routine structure

refinements of twinned crystals. In problematic cases, e.g. if

there are doubts about the twin law involved (or whether the

crystal is twinned at all, or if the volume fraction of one

domain state is very small), a special examination of the

diffraction intensities that should be affected by a suspected

twin law must be undertaken.

3.3. X-ray topographic imaging of merohedral twin domains

By X-ray diffraction topography [for an introduction see

Tanner (1976) and Authier (2005), ch. 17] twin domains are

visualized either by ‘domain contrast’, owing to different

structure-factor moduli10 of different domains states, or by

contrast of their domain boundaries (Lang, 1965a, 1967; Lang

& Miuskov, 1969; Phakey, 1969; Klapper et al., 1983, 1987;

Klapper, 1987). The visualization of the domain boundaries is

important in those cases where domain contrast does not

occur, e.g. for inversion twins in the case of negligible anom-

alous scattering. Here we consider only the domain contrast

which arises when, owing to the twin law, the intensity of the

reflection used for imaging is different in the various domain

states. An early study of Dauphiné and Brazil twins of quartz

has been reported by Lang (1965a). For mapping of Dauphiné

domains he used the twin-related reflections 10�111/�11011 and

30�331/�33031, which belong to the two non-equivalent rhombo-

hedra {h0 �hhl} and { �hh0hl} (diffraction cases B1). Since the

structure-factor moduli |F(�11011)| and |F(10�111) | differ by a

factor of about 1.5, the domain contrast is only moderate for

this pair of reflections (cf. Fig. 4), whereas it is extremely

strong for the second pair: |F(�33031)| is about ten times larger

than |F(30�331)|. This study was made in transmission (Laue

case) with moderately absorbing silver K�1 radiation (� =

0.56 Å). For the mapping of Brazil (inversion) domains, Lang

(1965a) used reflections 11�221 and �11�1121 [non-centrosymmetric

face forms ‘trigonal dipyramid’ {hh2 �hhl} and { �hh �hh2hl}, cf. Fig.

3(a), diffraction case B2] and cobalt K�1 radiation (� =

1.789 Å), which is subject to a sufficiently strong anomalous

scattering by silicon. His topographs, recorded by reflection

(Bragg case) from both surfaces of a 1 mm-thick quartz plate,

clearly revealed Brazil twin domains by domain contrast.

Similarly, antiparallel 180� domains in ferroelectric BaTiO3

(point group 4mm) have been imaged in reflections 003/00�33
(non-centrosymmetric face form pedion {00l}) by domain

contrast owing to anomalous scattering of chromium K�1

radiation (� = 2.290 Å) by Ba and Ti (Niizeki & Hasegawa,

1964). Another example is given by Wallace (1970), who

mapped 180� domains of rhombohedral lithium niobate (low-

temperature point group 3m) by faint domain contrast of

reflections 0006/000�66 by surface reflection (Bragg case) using

Cu K� radiation (diffraction case B2). Of particular benefit in

this respect is the use of synchroton white-beam topography,

because the continuous synchrotron spectrum allows one to

select an imaging wavelength close to the absorption edge of a

significant atom, providing relatively strong contrast of

inversion domains. This has been shown, e.g. by Huang et al.

(1996) and Liu et al. (1996), for ferroelectric KTiOAsO4 (point

group mm2) with reflections 004/00�44 and wavelengths (0.928

and 0.964 Å) close to the K-absorption edge of As (1.044 Å).

Fig. 4 shows the Dauphiné transformation twinning of

quartz. A detailed study of the growth twinning (Dauphiné,

Brazil and Leydolt twins) of quartz-homeotype gallium

orthophosphate, GaPO4, by etching, optical activity and X-ray

topography is presented by Engel et al. (1989). Dauphiné and

Leydolt domains have been mapped with Ag K� radiation,

using twin-related ‘rhombohedral’ reflections 10�111/�11011 and

30�331/�33031, the former providing moderate, the latter very

strong B1 domain contrast, similar to quartz (see above).

Fig. 5 presents four topographs of hexagonal KLiSO4 (space

group P63) which very frequently exhibits growth twins with

twin law ‘reflection plane m parallel to the hexagonal axis 6’

(composite symmetry 6mm) with sharply defined (0001) twin

boundaries (Klapper et al., 1987). The topographs recorded in

reflections 0003 and 30�330 do not show these twins (diffraction

cases A), but are useful for the characterization of other

growth defects (e.g. dislocations, growth striations, faulted
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Figure 4
X-ray topograph of an originally untwinned (11�220) plate of quartz
before (a) and after (b) heating to above 846 K (transition to high-quartz)
and cooling back to room temperature, recorded in the reflection �11011
(|F | = 24.7). The Dauphiné-twin domains generated by this temperature
cycle are imaged in the non-equivalent twin-related reflection 10�111 with
higher structure-factor modulus (|F | = 38.6) and, hence, appear in (b) with
higher intensity as dark ‘areas’ (twin diffraction case B1). The line
contrasts in (a) and (b) are growth striations. Mo K�1 radiation, imaged
section �8 mm � 18 mm (cf. Klapper et al., 1983).

10 Note that in the X-ray topography of large and perfect crystals the
diffracted intensity is proportional to |F | (dynamical reflection, cf. Zachar-
iasen, 1945; Authier, 2005, xx4.8.8, 4.9.2 and 4.9.3), in contrast to the
kinematical intensity proportional to |F |2, which is applied in the structure
determination of small (‘extinction-free’) crystals.



growth-sector boundaries), whereas

reflections 12�330 and 21�330 (diffraction

case B1) reveal the twinning by very

strong domain contrast (|F(12�330)| = 1.6,

|F(21�330)| = 18.2; Chung, 1972). In this

case the extreme domain contrast is

useful for a clear distinction of twin

domains from other growth defects,

since the latter generate local intensity

variations (film blackening) by a factor

of five or even more. In another case of

growth twins of NaLiSO4 (point group

3m, merohedal twin law ‘m normal to

threefold axis’, composite symmetry
�66m2) the twin domains can hardly be

recognized because of the low domain

contrast, compared with the strong local

intensity changes owing to other growth

defects (Klapper, 1987).

Another instructive example is

provided by the X-ray topographic

study of the very sluggish low-

temperature phase transition III (P63)

$ IV (P31m) of KLiSO4 at about 225 K

(hysteresis ’ 50�) (Klapper et al., 2008).

During this transition the growth twin-

ning (cf. Fig. 5) vanishes owing to the

evolution of the twin mirror plane

m || [001] of phase III (P63) into the

structural symmetry plane of phase IV

(P31m) and a new transition twinning

appears owing to the reduction of the

hexagonal structural symmetry axis in

P63 to the trigonal symmetry axis 3 in

P31m. The twin law ‘2 || [001]’, and thus

the space group P31m, is ascertained by

the topographic B1 domain contrast

characteristic of this twin law.

Note: the present paper treats only

twins by merohedry with complete

lattice coincidence, i.e. �1 twins. Twins

by reticular merohedry with partial lattice coincidence, i.e.

twins with � > 1, will be presented in a subsequent paper.

APPENDIX A
Classification of the laws of twinning by merohedry

In the previous sections of this paper we have shown with

many examples that the face forms are an illustrative and

useful tool for the treatment of intensity relations in the

diffraction of chiral, polar and merohedrally twinned crystals.

In this Appendix we present a systematic listing of the twin

laws in all 26 merohedral point groups11 under the aspect of

the index [n] between the merohedral group and its holohe-

dral supergroup as an ‘order parameter’, whereas the index [t]

of a merohedral twin (‘untwinned ! composite group’) is

always 2. All merohedral twins can be considered as either

inversion or twofold rotation or reflection twins.

Note the particular complexity in the hexagonal crystal

family with the five ‘trigonal’ groups 3, �33, 32, 3m, �332/m, which

are based on both a rhombohedral and a hexagonal lattice

with holohedries �332/m and 6/m2/m2/m; for the hexagonal

holohedry the two point-group settings �332/m1 and �3312/m are

two different merohedral subgroups of index [n] = 2. Note

furthermore that symbols such as 32, 321 and 312 or �442m and
�44m2 do not only refer to different descriptions of the same

point group but rather imply different structures with different
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Figure 5
X-ray topographs (Mo K�1 radiation) of a (11�220) plate (12 mm � 12 mm, about 1 mm thick) cut
from a hexagonal KLiSO4 (modification III) crystal (point group 6; cf. x2.2.3), grown from aqueous
solution, exhibiting growth reflection twinning of law m || [001] with two domain states I and II.
The twin-related reflections 21�330(I)/12�330(II) (a) and 12�330(I)/21�330(II) (b) (diffraction case B1; cf. Fig.
2b), with very different moduli F(12�330) = 1.6 and F(21�330) = 18.2 (Chung, 1972), map the domain
states I and II with very strong domain contrast, which is reversed in (b) when the two twin-related
reflections are interchanged. The imaging reflections 0003 (c) and 30�330 (d), both twin diffraction
case A (cf. Fig. 2a), do not reveal the domain states I and II (no domain contrast), but exhibit other
growth defects, such as dislocations, faulted growth-sector boundaries etc. Note that these defects
are not visible in the faintly diffracting domains of (a) and (b) owing to their small F-modulus which
leads to kinematical (i.e. extinction-free) diffraction (cf. Klapper et al., 1987).

11 Inclusion of �332/m as merohedry of the hexagonal lattice holohedry brings
the number of merohedral point group types from 25 (= 32 � 7 holohedries)
to 26.



space groups (e.g. R32, P321 and P312 or P�442m and P�44m2);

these ‘structural settings’ were first introduced and listed by

Donnay (1977). In the present paper, 35 such structural

settings of the 26 merohedral point-group types are treated,

leading to a total of 63 possible merohedral twin laws.

In conclusion, it is apparent from Tables 7 and 8 that the

‘complexity’ of the twinning by merohedry depends upon the

‘distance’ of the crystal point group from its holohedral point

group, i.e. upon the index [n] of the merohedral group with

respect to its holohedry. For the possible indices [n] = 2, 4, 8

the number of (binary) merohedral twin laws is n � 1 = 1, 3, 7.

They consist always of one inversion, (n � 2)/2 rotation and

(n � 2)/2 reflection twins, i.e. for [n] = 4 of one inversion, one

rotation and one reflection twin, for [n] = 8 of one inversion,

three rotation and three reflection twins.

The value of the index n has a further meaning which is

important for the refinement of twinned crystal structures: n is

the maximal number of domain states (orientation states)

which can coexist in a merohedral twin. For n = 2 this is trivial,

for n = 4 illustrative examples are quartz and KLiSO4

described in x2.2.2, x2.2.3 and Appendix C. For n = 8 (point

group 3) no twin with eight domain states is known yet, but

refinement of an organometallic Os compound (space group

P31) resulted in three possible twin laws and four of the eight

possible domain states with, however, quite different volume

fractions, dominated by a pair of reflection twin domains

(Herbst-Irmer & Sheldrick, 1998, example 1; Herbst-Irmer,

2006, pp. 122–127; Flack & Bernardinelli, 1999, x8.2). A twin

with n merohedral domain states would be the ‘complete twin’

of Curien & Donnay (1959), with the holohedral point group

as twin-composite symmetry, in the three cases above

6/m2/m2/m (cf. Hahn & Klapper, 2003, x3.3.6.14)

A different aspect of the values n = 2, 4 and 8 has been

pointed out by Le Page et al. (1984, especially Table 1): n is the

number of non-equivalent ‘structural settings’ of a merohedral

point group in its holohedry, i.e. the number of different
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Table 7
Merohedral twins with index [n] = 2 between merohedral and holohedral
group; only one twin law exists for each setting of a merohedral group.

Subtable (i): the twin laws can be considered as both rotation and reflection
twins, because both types of operations belong to the twin coset. All face forms
in these groups are centrosymmetric. Only twin diffraction cases A and B1
(but not B2) occur. The merohedral twins of point group �33 with hexagonal
lattice (index [n] = 4) are given in Table 8(i).

Subtable (ii): all these twins are inversion twins. Centrosymmetric face forms
are mapped onto themselves (twin diffraction case A), non-centrosymmetric
forms onto their ‘inverted’ face forms (twin diffraction case B2). Diffraction
case B1 does not occur. Note that for the twin 1! �11 case A does not occur.
Further inversion twins are given in Tables 8(ii) and 8(iii).

(i) 6 centrosymmetric merohedral groups

Untwinned group Composite group

4/m 4/m2/m2/m
�33 (rhombohedral lattice) �332/m
�332/m1 (hexagonal lattice) 6/m2/m2/m
�3312/m (hexagonal lattice) 6/m2/m2/m
6/m 6/m2/m2/m
2/m�33 4/m�332/m

(ii) 17 non-centrosymmetric merohedral groups

Untwinned group Composite group

1 �11 (only B2)
2, m 2/m
222, mm2 2/m2/m2/m
422, 4mm, �442m, �44m2 4/m2/m2/m
32, 3m (rhombohedral lattice) �332/m
622, 6mm, �662m, �66m2 6/m2/m2/m
432, �443m 4/m�332/m

Table 8
Merohedral twins with indices [n] = 4 and [n] = 8 between merohedral
and holohedral group; for [n] = 4 there are three twin laws for each setting
of a merohedral group, for [n] = 8 seven twin laws [last line in subtable
(ii)].

Subtable (i): only twin diffraction cases A and B1 occur. All three twins can be
considered as either rotation or reflection twins, because their cosets contain
both types of operations.

Subtable (ii): for inversion twins only twin diffraction cases A and B2 occur
(except for the twin 3! �33, where case A does not occur, because there is no
centrosymmetric face form in point group 3). Note that in the reflection twins
(column 4) with [n] = 4 morphologically inverted forms (case B2) do not occur,
whereas for [n] = 8 all three cases are realised. In the last line the unique twin
case of index [n] = 8 is presented, point group 3 with respect to the hexagonal
holohedry 6/m2/m2/m. Again, diffraction case A does not occur for the
inversion twin 3! �33. For the rotation and reflection twins all three cases A, B1
and B2 occur.

Subtable (iii). Here inversion twins (column 2) and ‘mixed’ rotation and
reflection twins occur; in the latter, the twin coset contains a twofold rotation
as well as a reflection, but both are not perpendicular to each other (columns 3
and 4; see also Appendix B below).

(i) 1 centrosymmetric merohedral group

Untwinned group
Rotation and reflection twins, twin diffraction cases
A, B1

�33 (hexagonal
lattice)

�332/m1 �3312/m 6/m

(ii) 6 + 1 enantiomorphic (chiral) merohedral rotation groups, [n] = 4 and 8

Untwinned group
Inversion twins
A, B2

Rotation twins
A, B1, B2

Reflection twins
A, B1

4 4/m 422 4mm
3 (rhombohedral

lattice)

�33 (only B2) 32 3m

321 (hexagonal
lattice)

�332/m1 622 �662m

312 (hexagonal
lattice)

�3312/m 622 �66m2

6 6/m 622 6mm
23 2/m�33 432 �443m
3 (hexagonal

lattice)
([n] = 8)

�33 (only B2) 6, 321, 312 �66 = 3/m (A, B1),
3m1, 31m (+ B2)

(iii) 4 non-enantiomorphic non-centrosymmetric merohedral groups

Untwinned group
Inversion twins
A, B2

Rotation and reflection twins
A, B1, B2

�44 4/m �442m �44m2
3m1 (hexagonal

lattice)

�332/m1 6mm �66m2

31m (hexagonal
lattice)

�3312/m 6mm �662m

�66 6/m �662m �66m2



transformations (including the identity)

of the base vectors a, b, c, the atomic

coordinates x, y, z and the Miller indices

(structure factors) h, k, l within a crystal

family. These settings are in a one-to-

one correspondence with the possible

merohedral twin laws of a given point

group. Thus, for point group 3 the seven

(non-identity) transformations within

the hexagonal holohedry 6/m2/m2/m

correspond to the seven possible

merohedral twin laws, listed in the last

line of Table 8(ii).

APPENDIX B
Morphologically (geometrically)
inverted face forms

In this Appendix general and special

face forms {hkl}, which are of particular

significance for the B2 diffraction case,

are discussed. These face forms them-

selves are non-centrosymmetric but are

mapped by a twin operation onto their

‘inverted’ form { �hh �kk�ll}. Superposition

(combination) of these two forms

results in a centrosysmmetric set {hkl},

which is the face form {hkl} of the twin

composite group, no matter whether the

latter is centrosymmetric or not. Hence,

these pairs of inverted forms have

‘Bijvoet character’ and correspond to

twin diffraction case B2. Examples are

shown in Fig. 3.

These ‘morphological inversions
�11morph’ can be the result of three twin

cases:

(1) a twin inversion centre �110 ! �11morph;

(2) a twofold twin axis 20 perpendicular to an eigensymmetry

mirror plane m of the special face form, 20/m! �11morph;

(3) a twin reflection plane m0 normal to a twofold eigen-

symmetry axis 2 of the special face form, 2/m0 ! �11morph.

The prime indicates the twin operation in order to distin-

guish it from the eigensymmetry operation of the face form.12

Note that the unprimed symmetry elements 2 and m belong to

the eigensymmetry of the face form but may not belong to the

symmetry group of the untwinned crystal; otherwise the twin

would be an inversion twin of case (1).

Case (1) occurs in all 21 non-centrosymmetric merohedral

point groups listed in Appendix A, Table 7(ii) (index [n] = 2)

and Tables 8(ii) and 8(iii), column 2 (index [n] = 4, 8). Case (2)

occurs only in rotation twins of chiral and achiral non-

centrosymmetric groups of [n] = 4 and 8, Tables 8(ii) and 8(iii).

Case (3) occurs in a ‘pure way’ only in the [n] = 8 point group 3

(hexagonal lattice), Table 8(ii), last line, column 4, which is

discussed below.

Simultaneous occurrence of cases (2) and (3) is found in all

non-centrosymmetric non-enantiomorphic (achiral) groups,

the twins of which can be considered as rotation as well as

reflection twins (‘mixed way’). These are listed in Table 8(iii),

columns 3 and 4.

The three cases (1)–(3) above are now illustrated by

examples and the following section ‘Concerning (3): reflection

twin’ with Figs. 6 and 7.

Concerning (1): inversion twins. All centrosymmetric face

forms are mapped upon themselves (twin diffraction case A),

all non-centrosymmetric forms {hkl} (general and special) are

mapped upon their inverted ‘opposite’ forms { �hh �kk�ll} (case B2).

Examples: (i) Twin 321! �332/m1 (Brazil twin of quartz, cf.

Table 4): the following non-centrosymmetric face forms are

mapped upon their inverted opposites: trigonal bipyramid

{hh2 �hhl}, ditrigonal prism {hki0} and trigonal prism {hh2 �hh0}.

Their twin combinations result in the centrosymmetric forms
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Figure 6
Reflection twinning 3! 3m1 of index 2 with twin element ‘reflection plane {10�110}’ (index [n] = 8
with respect to the hexagonal holohedry 6/m2/m2/m). Two pairs of twin-related non-
centrosymmetric face forms (‘acentric’ reflection sets) are considered: (i) the trigonal prism I
{h0 �hh0} (green) and its inverted (‘opposite’) form { �hh0h0} (red); (ii) the trigonal prism II {hh2 �hh0}
(blue), superimposed upon itself, because the twin element is part of its eigensymmetry. The
stereographic projections of these forms in the two twin orientation states are shown. Forms with
different F-moduli (owing to different anomalous-scattering contributions) are distinguished by
different colours (green and red). The superposition of the coloured face poles (reciprocal-lattice
points, reciprocal diffraction vectors) of the two orientation states reveals the intensity
characteristics of the twin-related reflections: reflection set {h0 �hh0} (green) is superimposed upon
its non-equivalent inverted (opposite) set { �hh0h0} (red, different colours, twin diffraction case B2),
whereas the set {hh2�hh0} (blue) is superimposed upon itself (equal colour, case A). This is further
illustrated by the corresponding coloured face forms trigonal prism viewed along the threefold axis.
For the other twin reflection plane {11�220} in 3 ! 31m (not shown here) the prism {h0�hh0} is
superimposed upon itself (blue, case A), whereas the prism {hh2 �hh0} is superimposed upon its
inverted form (green/red, case B2).

12 The prime is commonly used in the treatment of black–white symmetries (cf.
Hahn & Klapper, 2003, x3.3.4).



hexagonal bipyramid, dihexagonal

prism, hexagonal prism, respectively, of

composite group �332/m1 (cf. Fig. 3a).

(ii) Cubic twin 23 ! 2/m�33 (cf. Table

6): the face form tetrahedron {hhh} is

mapped upon its inverted tetrahedron

{ �hh �hh �hh}, resulting in the centrosymmetric

face form octahedron of composite

group 2/m�33 (Fig. 3c).

Concerning (2): rotation twins.

Certain face forms are mapped upon

themselves (diffraction case A), others

upon their inverted opposites (case B2),

and still others upon a ‘non-inverted’

form (case B1).

Examples: (i) Twin 321 ! 622

(Dauphiné twin of quartz, cf. Table 4):

the face forms mapped upon their

inverted antipodes are the same as for

the inversion (Brazil) twin above (Fig.

3a).

(ii) Cubic twin 23! 432 (cf. Table 6):

as above, the tetrahedron {hhh} is

morphologically inverted, leading to the

combined form octahedron (Fig. 3c).

Concerning (3): reflection twins. This

case occurs as a ‘pure’ reflection twin 3

! 3m1 only in point group 3 (hexa-

gonal lattice, [n] = 8): the ‘fixed’

(specially oriented) trigonal prism

{h0�hh0} (eigensymmetry �662m) is mapped

upon its inverted form by m0 = (10�110)

[normal to the twofold eigensymmetry

axis of the prism; twin diffraction case

B2], whereas the other fixed prism

{hh2 �hh0} is mapped upon itself (diffrac-

tion case A), cf. Fig. 6. For the other

pure reflection twin 3 ! 31m [m0 = (11�220)] the diffraction

cases are A for prism {h0 �hh0} and B2 for prism {hh2 �hh0}. Simi-

larly, reflection twin 3 ! 3/m [m0 = (0001)]: case B2 for the

pedion (000l) (eigensymmetry1m).

A twin is simultaneously a rotation and a reflection twin

(‘mixed way’), when non-perpendicular twin elements 20 and

m0 are contained in the twin coset [Table 8(iii), columns 3

and 4].

Example: Twin �44 ! �442m (mixed rotation and reflection

twin): the ‘fixed’ face form ‘tetragonal tetrahedron

(disphenoid)’ {h0l} is mapped upon its inverted form by

20h100i as well as by m0{110} (case B2), resulting in the

centrosymmetric combination ‘tetragonal dipyramid’. The

other fixed tetragonal tetrahedron {hhl}, however, is mapped

upon itself (diffraction case A) by these two twin operations

(Fig. 7).

Note that for the different twin �44 ! �44m2 the twin

operations are 20h110i and m0{100}; both invert the face form

{hhl} (case B2), but leave the form {h0l} unchanged

(case A).

APPENDIX C

Diffraction intensity relations of twinned
enantiomorphic crystals

In this Appendix only merohedral twins of enantiomorphic

(chiral) crystals are treated. They deserve special considera-

tion with respect to the structure-factor moduli of their twin

partners, because partners either of equal or of opposite

handedness are combined. Three cases are distinguished:

(i) Inversion twins: partners of opposite handedness and

inverted (‘opposite’) orientation are combined.

(ii) Rotation twins: partners of equal handedness but

different orientation are combined.

(iii) Reflection twins: partners of opposite handedness but

with mirror-related orientation are combined, i.e. the orien-

tation relation differs from that of an inversion twin.

Following international usage, the same right-handed

coordinate system is chosen here for both enantiomorphs. The

following relations between the structure-factor moduli of

right- and left-handed structures, indicated by subscripts
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Figure 7
‘Mixed’ rotation and reflection twinning �44! �442m (coset of twin elements: 2[100], 2[010], m(110), m(1�110),
here represented by 2[100]), applied to two twin-related non-centrosymmetric face forms (‘acentric’
reflection sets): (i) the tetragonal tetrahedron (disphenoid) {h0l} (green) and its inverted (opposite)
form {h0�ll} (red); (ii) the tetragonal tetrahedron {hhl} (blue), superimposed upon itself. [Note: {h0�ll}�
{�hh0�ll} (red) and {hhl} � {�hh�hhl} (blue) (different representatives).] The stereographic projections of
these forms in the two twin orientation states are shown. Dots represent the face poles (reciprocal-
lattice points, reciprocal diffraction vectors) on the upper, circles on the lower half of the projection
sphere. Forms with different F-moduli (owing to different anomalous-scattering contributions) are
distinguished by different colours (green and red). The superposition of the face poles reveals the
intensity characteristics of twin-related reflections: reflection set {h0l} (green) is superimposed upon
its non-equivalent inverted (opposite) set {h0�ll} (red, different colours, twin diffraction case B2),
whereas the set {hhl} (blue) is superimposed upon itself (equal colour, case A). This is further
illustrated by the corresponding coloured tetragonal tetrahedra viewed along the axis �44.



‘right’ and ‘left’, are generally valid for

all non-centrosymmetric sets of reflec-

tions, independent of their face forms:

(a) |F(hkl)right| 6¼ |F( �hh �kk�ll)right|,

|F(hkl)left| 6¼ |F( �hh �kk�ll)left|, owing to

different anomalous-scattering contri-

butions (Bijvoet pairs).

(b) |F(hkl)right| 6¼ |F(hkl)left|, again

owing to different anomalous-scattering

contributions.

(c) |F(hkl)right| = |F( �hh �kk�ll)left|, |F(hkl)left|

= |F( �hh �kk�ll)right|, because of equal anom-

alous-scattering contributions.

For the special case of centrosym-

metric face forms, all four F-moduli are

equal:

jFðhklÞrightj ¼ jFð �hh �kk�llÞrightj ¼ jFðhklÞleftj

¼ jFð �hh �kk�llÞleftj:

In the following, only those special non-

centrosymmetric face forms {hkl} which

are ‘morphologically inverted’ into their

opposite forms (antipodes) { �hh �kk�ll} by the

twinning (cf. Appendix B) are consid-

ered. For these face forms the above

relations (a)–(c) have the following

consequences for enantiomorphic crys-

tals:

Inversion twins [Appendix A, Table

8(ii), column 2]: all twin-related non-

centrosymmetric sets of reflections

{hkl}(right) and {hkl}(left), with the same

signs of their indices but different

F-moduli, are superimposed [diffraction

case B2, relation (b) above]. Note that

{hkl}(right) would be superimposed with

{ �hh �kk�ll}(left) (different signs of indices) if

the left-handed structure would be

referred to a left-handed coordinate

system.

For inversion twins of non-centro-

symmetric but non-enantiomorphic

(achiral) crystals, {hkl} pairs with

opposite signs of their indices are always

superimposed, independent of the

handedness of the coordinate system.

Rotation twins [Table 8(ii), column 3]:

both twin partners have the same

handedness. If the twofold twin rotation

axis is perpendicular to a mirror plane

of the eigensymmetry of an acentric face

form {hkl}, twin-related sets of reflec-

tions {hkl}(right) and { �hh �kk�ll}(right), or

{hkl}(left) and { �hh �kk�ll}(left), with opposite

signs of their indices, are superimposed

and form case B2 [different F-moduli
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Figure 8
(a) Stereographic projections of the non-centrosymmetric face form trigonal dipyramid {hh2 �hhl} and
its inverse opposite form { �hh �hh2h�ll} of a quartz crystal for the three twin types 321! �332/m1 (Brazil,
inversion), 321! 622 (Dauphiné, rotation) and 321! �662m (Leydolt, reflection). Dots represent the
face poles (reciprocal-lattice points, reciprocal diffraction vectors) on the upper, circles on the lower
half of the projection sphere. R and L indicate right- and left-handed crystals. Forms with different
F-moduli (owing to different anomalous-scattering contributions) are distinguished by different
colours (green and red). The following pairs of stereographic projections represent the same twin
law: horizontal pairs, inversion twins ‘Br’; vertical pairs, Dauphiné twins ‘D’; diagonal pairs, Leydolt
(‘combined’) twins ‘C’. The superposition of the diagrams of a pair shows the intensity
characteristics of the twinned crystal: if face poles of different colour are superimposed (Brazil
and Dauphiné twins), diffraction case B2 with different F-moduli results; if the superimposed face
poles have the same colour (Leydolt twins), case A with equal moduli results. Note that in Brazil
and Dauphiné twins the polar twofold axes (indicated by + and �) are reversed (‘electrical
twinning’), whereas in Leydolt twins they remain unchanged. (b) The same twin relations as in (a),
but in terms of Miller–Bravais indices. Note: F [set{hh2 �hhl}right] = F [set{ �hh �hh2h�ll}left] (both green) and
F [set{ �hh�hh2h�ll}right] = F [set{hh2 �hhl}left] (both red). The two equations correspond to the two general
equations (c) of the present Appendix C. They explain why reflections {hh2 �hhl} related by the
Leydolt twin law exhibit the same F-moduli. The asterisks (*) indicate different representatives of
the set related by the eigensymmetry plane mz of the trigonal dipyramids.



owing to anomalous scattering, relation

(a) above]. This leads to a morphologi-

cally inverted form (cf. Appendix B).

Reflection twins [Table 8(ii), column

4]: both twin partners have opposite

handedness. In contrast to the inversion

and rotation twins, here the non-

centrosymmetric twin-related face

forms are mapped upon themselves and

not upon their inverted ones. Reflection

sets {hkl}(right) and { �hh �kk�ll}(left) or {hkl}(left)

and { �hh �kk�ll}(right), both with equal moduli,

are superimposed [diffraction case A,

relation (c) above]. The superimposed

diffraction intensities are independent

of the twin volume ratio and there is no

domain contrast in X-ray topography.

Face forms which are not mapped upon

themselves or upon their ‘opposites’

provide B1 diffraction cases (different

geometrical structure factors).

Example: reflection twin 321! �662m

(cf. Table 4, column 5): the acentric face

forms {hh2 �hhl}, {hki0} and {hh2 �hh0} are

mapped upon themselves, as well as the

centric forms {h0 �hh0} and {000l} (all

diffraction case A). The forms {hkil}

(acentric) and {h0 �hhl} (centric) are not

mapped upon themselves or upon their

opposites: diffraction cases B1

(different geometrical structure

factors). Case B2 does not occur, as in

all other reflection twins, except for

those with [n] = 8 [Table 8(ii)].

A special case, however, exists for the

[n] = 8 reflection twins 3 ! 3m1, 31m

[Table 8(ii), last line, column 4]. Of the

two fixed trigonal prisms {h0 �hh0} and

{hh2 �hh0} (differently oriented eigen-

symmetries �662m), always one is trans-

formed into itself (case A), the other

into its inverted (opposite) form [case

B2, cf. Fig. 6 and Table 9(c)]. For the

reflection twin 3! �66 = 3/m all trigonal

pyramids constitute case B1 and all

trigonal prisms case A. Only the pedion

(000l) is a B2 case.

As an example, the above general

relations of the F-moduli and their

superposition are illustrated by the

three merohedral twins of quartz (treated in detail in x2.2.2)

for two types of face forms:13

(i) The non-centrosymmetric form {hh2 �hhl} and its inverted

opposite form { �hh �hh2h�ll} (two symmetrically non-equivalent

trigonal dipyramids). From the stereographic projections in

Fig. 8 it is immediately clear that in the Brazil and the
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Figure 9
(a) The same as in Fig. 8 but for the two centrosymmetric non-equivalent face forms rhombohedron
{h0 �hhl} (green) and rhombohedron { �hh0hl} (red). Each of these two rhombohedra has the same
F-moduli for right- and left-handed crystals, i.e. |Ffh0 �hhlgleft | = |Ffh0 �hhlgright|, whereas the F-moduli of
the two (green and red) rhombohedra differ (different geometric and anomalous-scattering
contributions, diffraction case B1, in contrast to diffraction case B2 of Fig. 8). Again, the
superposition of the diagrams of twin-related rhombohedra reveals whether the reflections sets are
affected by the twinning (different colours for the Dauphiné and Leydolt twins, diffraction case B1)
or not affected (equal green and red colours for the Brazil twin, case A). (b) The same twin relations
as in (a), but in terms of Miller–Bravais indices. Note that a rhombohedron {h0 �hhl} (green) is, owing
to its centrosymmetric eigensymmetry, transformed into the rhombohedron { �hh0hl}� {h0�hh�ll} (red) by
both, the twofold axis D(2z) and the mirror plane C(mz), whereas it is mapped upon itself by the
Brazil twin Br(�11).

13 To achieve a correct ‘setting’ of low-quartz can be a rather complicated
affair, full of pitfalls, owing to the various choices involved: right-quartz versus
left-quartz, right-handed versus left-handed coordinate system, enantio-
morphic space group P3121 versus P3221, sense of optical rotation, choice of
origin along the c axis and possible positive directions of all the axes. These
problems are extensively discussed by Lang (1965b) and Donnay & Le Page
(1978).
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Table 9
(a) Triclinic, monoclinic and orthorhombic point groups (only meroheral inversion twins possible).

Composite group
Twin diffraction cases for different types of reflections (face forms)

Point group Composite group (black–white notation) hkl h0l 0kl hk0 h00 0k0 00l

1 1 �110 All reflections B2
2 (|| b) 2/m 2/m0 (�110) B2 A B2 B2 A B2 A
m (? b) 2/m 20/m (�110) B2 B2 B2 B2 B2 A B2
222 2/m2/m2/m 2/m02/m02/m0 (�110) B2 A A A A A A
mm2 2/m2/m2/m 20/m20/m2/m0 (�110) B2 B2 B2 A A A B2

(b) Tetragonal point groups

Composite group
Twin diffraction cases for different types of reflections (face forms)

Point group Composite group (black–white notation) hkl h0l hhl hk0 h00 hh0 00l

4 4/m 4/m0 (�110) B2 B2 B2 A A A B2
422 42020 B1 B2 B2 B1 A A B2
4mm 4m0m0 B1 A A B1 A A A

�44 4/m 40(2)/m0 (�110) B2 B2 B2 A A A A
�442m �4420m0 B1 B2 A B1 A A A
�44m2 �44m020 B1 A B2 B1 A A A

4/m 4/m2/m2/m 4/m20/m020/m0 B1 A A B1 A A A
422 4/m2/m2/m 4/m02/m02/m0 (�110) B2 A A A A A A
4mm 4/m2/m2/m 4/m020/m20/m (�110) B2 B2 B2 A A A B2
�442m 4/m2/m2/m 40(2)/m02/m020/m (�110) B2 A B2 A A A A
�44m2 4/m2/m2/m 40(2)/m020/m2/m0 (�110) B2 B2 A A A A A

(c) Trigonal point groups (hexagonal lattice)

Composite group
Twin diffraction cases for different types of reflections (face forms)

Point group Composite group (black–white notation) hkil h0�hhl hh2 �hhl hki0 h0�hh0 hh2 �hh0 000l

3 �33 �330(3) (�110) All reflections B2
321 3201 B1 B2 B1 B1 B2 A B2
312 3120 B1 B1 B2 B1 A B2 B2
3m1 3m01 B1 A B1 B1 A B2 A
31m 31m0 B1 B1 A B1 B2 A A
6 60(3) B1 B1 B1 B2 B2 B2 A
�66 �660(3) = 3/m0 B1 B1 B1 A A A B2

�33 �332/m1 �3320/m01 B1 A B1 B1 A A A
�3312/m �33120/m0 B1 B1 A B1 A A A
6/m 60(3)/m0 B1 B1 B1 A A A A

321 �332/m1 �330(3)2/m01 (�110) B2 A B2 B2 A B2 A
�662m �660(3)2m0 B1 B1 A A A A A
622 60(3)220 B1 B1 B2 B2 A B2 A

312 �3312/m �330(3)12/m0 (�110) B2 B2 A B2 B2 A A
�66m2 �660(3)m02 B1 A B1 A A A A
622 60(3)202 B1 B1 B2 B2 B2 A A

3m1 �332/m1 �33020/m1 (�110) B2 B2 B2 B2 B2 A B2
�66m2 �660(3)m20 B1 B1 B2 A A A B2
6mm 60(3)mm0 B1 B1 A B2 B2 A A

31m �3312/m �330120/m (�110) B2 B2 B2 B2 A B2 B2
�662m �660(3)20m B1 B2 B1 A A A B2
6mm 60(3)m0m B1 A B1 B2 A B2 A

�332/m1 6/m2/m2/m 60(3)/m02/m20/m0 B1 B1 A A A A A
�3312/m 6/m2/m2/m 60(3)/m020/m02/m B1 A B1 A A A A

(d) Trigonal point groups (rhombohedral lattice)†

Composite group
Twin diffraction cases for different types of reflections (face forms)

Point group Composite group (black–white notation) hkl hhl hk(2k�h) hk( �hh+ �kk) hh2 �hh 0h �hh hhh

3 �33 �330(3) All reflections B2
32 320 B1 B2 B1 B1 B2 A B2
3m 3m0 B1 A B1 B1 A B2 A

�33 �332/m �3320/m0 B1 A B1 B1 A A A
32 �332/m �330(3)2/m0 (�110) B2 A B2 B2 A B2 A
3m �332/m �330(3)20/m (�110) B2 B2 B2 B2 B2 A B2



Dauphiné twins the above sets with F-moduli differing only in

their anomalous scattering contributions are superimposed

(diffraction cases B2), whereas for the Leydolt twin the F-

moduli are equal (case A). At first glance the latter result

seems to be strange, but it is easily understood from Fig. 8 by

considering the Leydolt twin [in the literature often called

‘combined quartz twin’, e.g. Frondel (1962)] as the combina-

tion of a Dauphiné (twin rotation 20) followed by a Brazil

(inversion �110) twin, resulting in the Leydolt twin (twin reflec-

tion plane m0(0001) which is an eigensymmetry plane of the

trigonal dipyramid).

(ii) As a second kind of face forms, the two twin-related

non-equivalent centrosymmetric rhombohedra {h0 �hhl} and

{ �hh0hl} are shown in Fig. 9. Owing to their eigen-centrosym-

metry each rhombohedron displays the same F-moduli for left-

and right-handed crystals. The moduli of the two rhombo-

hedra, however, differ in both anomalous scattering and

geometric structure-factor contributions. Thus, they provide

diffraction case A for Brazil and B1 for Dauphiné and Leydolt

twins. The special forms {10�111} and {�11011} are the major and

minor rhombohedron of the quartz morphology which

develop differently during growth in nature. Their F-moduli

are |F{10�111}| = 38.6, |F{�11011}| = 24.7.

Similar sets of four diagrams can be drawn also for the other

face forms (reflection sets) of the point group 321 of quartz, as

well as for the other merohedral point groups in which

inversion, rotation and reflection twins are possible [Tables

8(ii) and 8(iii) of Appendix A].

APPENDIX D
Survey of the diffraction cases of all 63 merohedral
twin laws

Table 9 in this Appendix provides a complete summary of the

63 possible merohedral twin laws in the 35 structural settings

of the 26 merohedral crystal classes. Each entry contains the

symbols of the untwinned point group and the twin composite

group, the latter both in standard and ‘black–white’ notation

(columns 2 and 3). Columns 4 to 10 contain the seven types of

reflections (face forms) and their twin diffraction cases A, B1

or B2 (cf. x2.2.1).

In the black–white symmetry symbols of a twin (column 3)

the primed symbols indicate the twin operation. If the primed

operation contains (as sub-element) an operation of the

untwinned group, the latter is added in parentheses, e.g. 321!
�330(3)2/m01 (�110). Inversion twins are always indicated by (�110).

For names and eigensymmetries of the face forms, see Table 1

and Tables 10.1.2.2 and 10.1.2.3 of Hahn & Klapper (2002).

The authors are gratefully indebted to J. Thar and A. von

Berg of this institute for the preparation of the figures. Thanks

are due to two anonymous referees for their constructive

comments, which helped to improve the paper.
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